Wastewater Sludge Recycling/Reuse in Japan

Workshop on Urban Fecal Sludge Management

23rd February 2010, Hanoi, Vietnam

Takehiko Kawai Director

Classification of Sewage Treatment Processes in Japan

As of the End of FY 2006

Sewage Treatment Process 処理法		Desigh Daily Maximum Dry Weather Flow (thousand m ³ /d) 計画晴天時日最大処理水量(千m ³ /日)						
		Less Than 5 (5未満)	5 - 10	10 - 50	50 - 100	100 - 500	More Than 500 (500以上)	Total 合計
Primary Treatment 一次処理	Plain Sedimentation 沈殿法	1		1				2
Secondary Treatment 二次処理	Anaerobic-Anoxic-Oxic Process 嫌気-無酸素-好気法		4	7	6	14		31
	Recycled Nitrification/Denitrification 循環式硝化脱窒法	5	2	10	2	8		27
	Nitrification/Endogenous Denitrification 硝化内生脱窒法	2		1				3
	Step-Feed-Type Nitrification-Denitrification Process ステップ流入式多段硝化脱窒法	1	2	5	4	7		19
	Anaerobic-Oxic Activated Sludge 嫌気-好気活性汚泥法	11		5	5	7		28
	Conventional Activated Sludge 標準活性汚泥法	45	50	327	117	124	9	672
	Extended Aeration 長時間エアレーション法	34	6	2				42
	Oxygen Aeration Activated Sludge 酸素活性污泥法	2	2	4	1	1		10
	Step Aeration ステップエアレーション	1		2	2	7		12
	Sequencing Batch Activated Sludge 回分式活性汚泥法	65	8	2	1	4		80
	Aerobic Biofilter 好気性ろ床法	22	6					28
	Biological Anaerobic-Aerobic Filters 嫌気好気ろ床法	41	1	1				43
	High-Rate Trickling Filter 高速散水ろ床法		1	2				3
	Contact Aeration 接触酸化法	14	1	2				17
	Rotating Biological Contactor 回転生物接触法	11	4	5	1			21
	Soil Covering-type Pebble Contactor 土壤被覆型碟間接触法	24					1	24
	Advanced Treatment Oxidation Ditch 高度処理オキシデーションディッチ法	34	8	1			1	44
	Oxidation Ditch オキシデーションディッチ法	783	88	37	1			909
	Other その他	29	8	13	4	7		61
Total 合計		1,125	191	427	144	179	10	2,076
Ad	vanced Wastewater Treatment 高度処理	101	23	56	29	83	4	296

Recycling of Resource and Energy from Sewerage

Recovery of Resource and Energy from Sewerage Sludge, in order to ensure stable treatment and to solve Global Warming

Amount of Sewerage Sludge Production

Fiscal Year

Land fill site

Tree Chart of Sludge Resources

Tree chart of sludge resources

Publicity Tool

Sludge Utilization: Compost

Piled type composting

Horizontal shovel type

JSC

Sludge compost products

Photo-6 Curing tank (inside)

Photo-7 Powder compost

Quality of product (3)

Heavy metals and other undesirable substances

	Fertilizer management law	Waste disposal and Cleaning law	Dioxin management law	Management standard for prevention of Heavy metal accumulation in soil for agriculture	Law for prevention of agricultural land contamination	(Note) Environmental standard for soil contamination
	Content	Elution amount	Content	Content	Content	Elution amount
Alkilmercury		ND				ND
Total Mercury	2 mg/kgDS	0.005mg/l				0.005mg/l
Cadmium	5 mg/kgDS	0.3mg/l			1mg/kg-rice	0.01mg/l
Lead	100mg/kgDS	0.3mg/l				0.01mg/l
Organic Phosphorus		1mg/l				ND
Chromium (IV)		1.5mg/l				0.05mg/l
Chromium	500mg/kgDS					
Arsenic	50mg/kgDS	0.3mg/l			15mg/kgDS	0.01mg/l
Cyanogen		1mg/l				ND
PCB		0.003mg/l				ND
Copper					125mg/kgDS	
Zinc				120mg/l		
Nickel	300mg/kgDS					
Selenium		0.3mg/l				0.01mg/l
Dioxin			3ng-TEQ/g			1ng-TEQ/g
	Official	Official			Only for paddy	
	standard for	standard for	for Ash, Slag,	Standard for	field	
	normal	normal	etc.	Soil itself	Standard for	
	fertilizer	fertilizer			soil itself	

The titles of the laws mentioned above are not the full titles.

Recycling of Resource and Energy from Sewage

Gifu Prefecture

Phosphorus recycling system

Fertilizer produced from sewage sludge is used for the production of vegetables in Gifu, and the vegetables are famous for their excellent quality.

Kobe-city

Biogas Station

Biogas Refinery

Carbonization of Sewer Sludge

Electric Power Generation

Problems with Digestion Gas

Problems for utilization

(1) Warming facilities and gas tank are corroded by digestion Gas which contains hydrogen

(2) Digestion gas which contains Siloxane creates problem by crystallization to warming facilities and gas blower.

③ Methane concentration is approximately 60%. Consequently, heating capacity is lower with about half of the capacity of the city gas.

Refining Digestion Gas to Bio Natural Gas

Refining System of Digestion Gas (water scrubbing process flow)

Effective use of Kobe Biogas

Vehicle for officials

Truck for sludge cake

Taxi

Drain pipe sweeping machines

Kobe city bus

Home dispatch

Project: Pouring into the City Gas

Properties	Unit	Digestion Gas (Pre-Desulfurization)	Kobe Bio Gas	Acceptance standard value by Osaka Gas	
Methane	Vol%	59.7	98.2	_	
Carbon dioxide	Vol%	37.0	0.6	≦0.5	
Oxygen	Vol%	0.4	0.2	≦0.01	
Nitrogen	Vol%	0.8	1.0	≦1.0	
Hydrogen Sulfide	ppm	330	<0.1	≦0.65	
Siloxane	mg/Nm ³	14.53	0.005以下	_	
High rank calorific value	MJ/Nm ³	23.8	39.3	45.0	
Smell	mg/Nm ³	_	_	12~16	

Networking of renewable biomass energy

Study on Economical Biomass Methane Fermentation in Small City

by Suzu City and JIWET (Japan Institute of Wastewater Engineering Technology)

The most important issue for sewage sludge treatment is the increase of treatment cost. Suzu City, which is located in a coastal area, expects to face an increase of cost for its sludge treatment. Suzu City is therefore promoting waste recycling by combining sewage sludge with other biomass and raw garbage from businesses to obtain methane fermentation. By using biogas energy to dry sewage sludge for utilization as a <u>fertilizer</u>, Suzu City expects to realize important cost saving for sludge treatment and other biomass treatment. The facility specifications were decided in 2005. The facility performance has been evaluated since the time it went into operation in 2007 to 2008. The purpose of this study is to evaluate the effects of such facility.

Location of Suzu City

Photo.1 Biomass methane fermentation treatment plant in Suzu City.

Sludge treatment flow in Suzu City

Figure 1 Schematic diagrams of biomass methane fermentation treatment facility

Possibility of utilizing dried sludge as a fertilizer

- The results of a pot test show no hindrance for plant growth with dried sludge. It was also confirmed that dried sludge is thoroughly useful as a fertilizer.
- Drying conditions has shown and confirmed that dried sludge meets EPA standards and is totally safe for health.

Photo.2 Results of a pot test showing no hindrance to plant growth by dried sludge.

Photo.3 Dried sludge

Life ycle cost (LCC) and life cycle CO2 (LCCO2) impacts

Fig.2 Comparison of LCCO₂